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Abstract: Mesoscopic fluorescence molecular tomography (MFMT) is a novel imaging 
technique capable of obtaining 3-D distribution of molecular probes inside biological tissues 
at depths of a few millimeters with a resolution up to ~100 μm. However, the ill-conditioned 
nature of the MFMT inverse problem severely deteriorates its reconstruction performances. 
Furthermore, dense spatial sampling and fine discretization of the imaging volume required 
for high resolution reconstructions make the sensitivity matrix (Jacobian) highly correlated, 
which prevents even advanced algorithms from achieving optimal solutions. In this work, we 
propose two computational methods to respectively increase the incoherence of the sensitivity 
matrix and improve the convergence rate of the inverse solver. We first apply a compressed 
sensing (CS) based preconditioner on either the whole sensitivity matrix or sub sensitivity 
matrices to reduce the coherence between columns of the sensitivity matrix. Then we 
employed a regularization method based on the weight iterative improvement method (WIIM) 
to mitigate the ill-condition of the sensitivity matrix and to drive the iterative optimization 
process towards convergence at a faster rate. We performed numerical simulations and 
phantom experiments to validate the effectiveness of the proposed strategies. In both in silico 
and in vitro cases, we were able to improve the quality of MFMT reconstructions 
significantly. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

As a novel imaging modality combining the benefits of millimeter deep molecular imaging 
with high sensitivity, Mesoscopic Fluorescence Molecular Tomography (MFMT) can resolve 
the distribution and concentration of fluorophores inside biological tissues based on boundary 
measurements [1,2]. MFMT has the unique potential to cover the gap between microscopic 
and macroscopic examination of biotissues by enabling resolution up to hundred micrometers 
level at a depth of a few millimeters in intact tissues (without optical windows or clearing 
agents). MFMT has already found applications in imaging bio-printed thick constructs [3,4], 
brain molecular [5,6], dental imaging [7] and tumor xenografts studies [8,9]. However, 
performances of MFMT are intrinsically associated with the inverse optical problem that need 
to be solved. 

Typically, the MFMT inverse problem is ill-posed and ill-conditioned. Hence it is very 
challenging to solve it in a robust fashion. Among the various techniques developed to solve 
ill-conditioned problems, iterative methods, embedded with various optimization algorithms, 
have become an effective approach that use successive approximations to obtain solutions 
with the help of additional constraints introduced by appropriate regularization techniques 
[10,11]. However, the performance of the iterative method adopted depends greatly on the 
incoherence and the spectrum of the forward sensitivity matrix. Additionally, many iterative 
methodologies rely on preconditioners to improve performance and ensure fast convergence 
[12]. In the case of the MFMT inverse problem, the measurements acquired are characterized 
with high redundancy due to the diffuse nature of the light collected, reflection geometry 
employed and dense spatial sampling. Hence, the associated Jacobian demonstrates high 
coherence between its columns and high condition number due to fine discretization of the 
volume to be imaged to attain hundred micrometers resolution. In turn, the designed iterative 
optimization algorithm will slowly converge and may be susceptible to the propagation and 
amplification of errors after successive iterations [13]. 

On the other hand, Compressed Sensing (CS) methodologies have been proved to be 
successful methods to recover sparse signals from far fewer samples than required by the 
traditional Shannon-Nyquist sampling theorem [14,15]. The CS framework guarantees 
accurate recovery of sparse signals under certain conditions, one of which is incoherence, i.e. 
in our case, the degree of the orthogonality of forward sensitivity matrix. Recent works in 
diffuse optical tomography (DOT) have demonstrated that using a properly preconditioning 
matrix can reduce the coherence between columns of the forward sensitivity matrix, and as a 
consequence alleviate the ill-posedness of the underdetermined linear system [16,17]. 
Similarly, our group has proposed a preconditioning strategy to reduce the coherence of 
sensitivity matrix for wide-field fluorescence molecular tomography [18]. As for the MFMT 
inverse problem itself, Yang et al. [19] investigated the influence of noise on reconstruction 
performance and addressed a two-step data reduction approach to achieve high fidelity 
results. Nevertheless, the implementation of effective preconditioning methodologies in 
MFMT has not been reported to date but is expected to greatly improve the performances of 
the reconstruction process. 

In this paper, we propose two computational methods to improve both incoherence and 
condition number of the sensitivity matrix of MFMT. First, we propose a preconditioner to 
reduce the correlation between columns of the Jacobian, which contribute to mitigating the 
ill-posedness of the inverse problem. Then another well-designed regularization parameter is 
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added to improve the convergence rate of the inverse solver to the targeted tolerance. The 
proposed strategies are described in Section 2 in details. Section 3 presents the objective 
metrics to evaluate spectrum property, coherence of Jacobian, noise level of measurements, 
and the MFMT reconstruction performances. Section 4 summarizes the in silico and in vitro 
experiment setups with reconstruction results. The discussion and conclusion are provided in 
Section 5. 

2. Method 

2.1 Configuration of the MFMT optical system 

The optical configuration of our second generation MFMT system has been described in 
details in previous reports [4,19]. Here, we provide the main salient features that are relevant 
to the optical inverse problem. Briefly, the system is built around the raster scanning of an 
illumination spot over the specimen with detection performed by an electron-multiplying 
CCD camera (emCCD) (iXonEM+ DU-897 back illuminated, Andor Technology) acquiring 
data in a descanned configuration. This set up enables the acquisition of up to 512 × 512 
measurements in parallel per illumination spot, leading to very dense spatial data sets. To 
obtain a data set that can be inverted efficiently, the emCCD data can be binned into super-
pixels that still provide high accuracy and resolution [19]. The discretization of the image 
space and positioning of the optodes configuration are illustrated in Fig. 1, where the green 
squares, red squares and blue squares respectively represent the discretized voxels of the 
imaging volume, pixels of emCCD camera, and super-pixels binned at 2 × 2 to provide 
enhanced SNR. 

 

Fig. 1. Schematic diagram of scanning mode of the 2nd generation MFMT system. (a) displays 
the discretization of imaging volume. (b) shows the dimension of the emCCD with super 
pixels (blue squares) binned by 2 × 2 pixels(red squares) used as detectors. (c) and (d) illustrate 
the scanning trajectory (blue dash) from start scanning spot (c) to the last one (d). 

This configuration and on the chip binning strategy leads to a total of 256 × 256 super 
pixels as detectors that cover a detection FOV of 6.4 × 6.4 mm2. To cast the inverse problem, 
we further down sample the measurements space by selecting a 7 × 7 detector matrix (D1, D2, 
……, D49) with a separation of ~0.6mm. To improve the dynamical range, the central 
detection which coincides with the position of the illumination spot is occluded during 
acquisition so detector 25 (D25) is not employed. On the illumination side, the raster scanning 
step size and dwelling time are typically set to 100 µm, 20 ms respectively, leading to a total 
of 961 scanning locations in the illumination FOV of 3.1 × 3.1 mm2. Last, the volume to be 
imaged is discretized uniformly in voxels of 100 μm length, leading to Ri (i = 1, ……, 31), Cj 
(j = 1, ……,31), and Zk (k = 1, 2,……, 30) number of voxels along the x, y and z axes 
respectively. Overall, this configuration leads to 46,128 measurements that are employed in 
the inverse optical problem (out of 251,920,384 possible without binning). 
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2.2 Forward model and inverse problem 

The source-detector separation in our MFMT implementation can be as small as 600 μm. 
Hence, in view of typical optical properties of tissues, the collected photons cannot be 
accurately modeled by the Diffusion Equation [20]. Therefore, we employ Monte Carlo (MC) 
method, commonly known as the gold standard [21]. The MC method is well established as 
being accurate in modeling photon propagation in shallow tissues and near sources [22,23]. 
To meet the accuracy requirements under high resolution of MFMT operating in the 
mesoscopic regime, up to 108 photons are simulated for each source/detector with the GPU-
based software MCX to simulate continuous-wave (CW) Green’s functions Gx and Gm at 
excitation and emission wavelengths [24]. The weight function W for one source-detector 
pair is then computed with an adjoint formulation for efficiency [25]: 

 x m
s d s dW(r , r , r) = G (r , r) G (r, r )×  (1) 

where rs, rd, and r are locations for source, detector and any location inside the specimen 
being probed, respectively. The measured fluorescence intensity for the corresponding 
source-detector pair U(rs, rd) can be formulated as the integral equation below: 

 3
s d s dΩ

U(r , r ) = W(r , r , r)η(r)dr  (2) 

where η(r) is the 3-D distribution of the fluorophore’s effective quantum yield. As at this time 
our experimental system is limited to the continuous wave (CW) data type for MFMT 
applications, however it’s straightforward to expand both Eqs. (1,2) to time-dependent form 
given time-resolved Green’s functions and the lifetime of fluorophore τ [26]. With M source-
detector pairs, and N discretized voxels of the Region of Interest (ROI), the inverse problem 
for MFMT in the matrix form becomes: 

 AX = b  (3) 

where A∈RM × N is the Jacobian, X∈RN × 1 represents the effective quantum yield, b∈RM × 1 is 
the vector of detector readings at all source positions. 

The CS based framework has been demonstrated as an effective methodology to exactly 
retrieve sparse solutions from under-determined linear systems [10,11,14]. Fortunately, the 
solutions in our MFMT application are inherently sparse because fluorescent biomarkers are 
supposed to be clustered within small regions of tissues such as tumors. To achieve sparsity in 
the image space, we add the commonly used l1-norm regularization term so that the 
optimization problem now becomes: 

 { 2

12
min AX - b + λ X  (4) 

where 
n

i1 1
X = x  denotes the l1-norm of fluorophore distribution vector and λ is the 

regularization parameter. The minimization problem in Eq. (4) can then be transformed to a 
convex quadratic problem with linear inequality constrains, and solved by a variety of inverse 
solvers such as the interior-point method that we applied in this work [27]. 

2.3 Preconditioning to reduce the coherence of the sensitivity matrix 

The first preconditioning strategy applied aims at reducing the coherence of the sensitivity 
matrix, so that the performance of CS-based sparse signal recovery algorithms is improved. 
The design of preconditioner follows a similar approach as described in [16–18] so we only 
briefly introduce the derivation. When a preconditioner MA is applied, the original Jacobian 
matrix becomes: 

 pre AA = M A  (5) 
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For simplicity, we assume that the preconditioned sensitivity matrix Apre is also column-
normalized, and to minimize the coherence of Apre, we seek to determine MA such that the 
Gramian matrix T

pre preA A  approximates the identity matrix [10,11,28], 

 T T T
pre pre A AA A = A M M A I≈  (6) 

Equation (6) still holds after multiplying A on the left and AT on the right, 

 = ≈T T T T T T
pre pre A AAA A A AA M M AA AA  (7) 

Taking the Singular Value Decomposition of A = UAA
T
AV , and substitute it into Eq. (7), we 

get: 

 ( ) ( ) ≈T T T T T
A A A A A A A A A AΣ Σ U M M U Σ Σ Σ Σ  (8) 

Thus, we choose MA as the preconditioner, 

 ( )
1

2
−

= T T
A A A AM Σ Σ U  (9) 

During the actual implementation, a regularization parameter is usually added for stabilization 
when having a large condition number, so the final form of our first preconditioner becomes: 

 ( )
1

2
−

= +T T
A A A AM Σ Σ I U  (10) 

where ϵ = 0.1 is empirically selected to provide the best trade-off between reducing matrix 
coherence and suppressing noise propagation in the measurements under the experimental 
noise level (SNR = 4) [18]. 

Note that although the construction of MFMT Jacobian also follows the adjoint form, we 
cannot separately reduce the coherence of excitation and emission matrices and compute the 
preconditioned sensitivity matrix through the Kronecker product, referred as “separate 
masks” in [18]. This is because the excitation and emission light fields of MFMT are coupled 
with each other, i.e., the source and CCD camera always move together and remain the same 
relative position as the scanning proceeds. Thus, only “global mask” strategy can be applied 
to MFMT, although it’s shown that “separate masks” are slightly superior in suppressing 
noise and improving resolution in the reconstruction results [16,18]. Though, we can harness 
the symmetry of the descanned acquisition configuration that leads to a block configuration in 
the forward model (one source-48 detectors). 

Herein, we propose a “sub-preconditioning” approach in which sub-matrices are 
preconditioned to overall lead to a reduction of the coherence of the whole matrix. In our 
case, 48 measurements are collected from each of the 961 scanning positions, so we can 
either perform preconditioning on 961 sub-matrices with 48 rows, or on 48 sub-matrices with 
961 rows. In practice, we chose the latter one because it’s more effective at reducing the 
overall coherence of the Jacobian. Thus, each sub-sensitivity matrix Ap (p = 1, ……, 48) 
corresponds to measurements from the same detector at all scanning positions. In the 
following studies, preconditioning strategies will be performed both globally and block by 
block, referred as “whole-preconditioning” and “sub-preconditioning”, and the performance 
of the two approaches are compared and analyzed. 

2.4 WIIM to speed-up the convergence rate of the inverse solver 

The convergence rate of an iterative optimal algorithm to solve a large linear system depends 
mainly on the condition number of its coefficient matrix [13,29]. Unfortunately the condition 
number in MFMT application is usually very large due to the high correlation between 
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different source-detector pairs resulting from dense sampling and fine discretization. Hence 
an effective method to reduce the condition number of the sensitivity matrix is highly desired. 

To this end, here we employ a regularization approach, Weighted Iterative Improvement 
Method (WIIM) [30], to effectively improve the ill-conditioned situation and thus contribute 
to a faster convergence rate of the iterative algorithm. We first construct the iterative process 
as following, 

 ( ) 1γ γk k++ = +Λ I x y x  (11) 

where Λ = ATA is a square matrix, y = ATb, I is the identity matrix, and k = 1, 2, 3, … is the 
iteration number. The nonzero constant γ determines the degree of improvement for the 
condition number of Λ. A small γ leads to minor improvement of convergence rate while a 
very large γ could result in stagnation of iteration or even divergence. It’s usually determined 
from the following empirical formula [30]: 

 
2

γ
0.1, (γ 0)

γ δ
≤ >

+
 (12) 

where δ  is the lower bound of all nonzero elements in the sensitivity matrix. The initial 
value of γ can be given according to Eq. (13) 

 
( )

( )
0.5 log 1γ 10

min( eig

ββ
β

+ =


= Λ
 (13) 

where β is the absolute value of the smallest eigenvalue of matrix Λ  and log is logarithm at 
the base 10. Let xk+1 = xk + ek and rk = y - Λxk, we can substitute them into Eq. (11) and get: 

 ( )γ k k+ =Λ I e r  (14) 

We can apply the same CS-based solver as we solve Eq. (3) because ek is the difference of 
fluorophore concentration between two iterations and thus is also sparse. With an initial guess 

0x , we can then repeatedly solve Eq. (14) and update the values of ek, rk, and xk. If the last 

residual norm ||rk|| reaches the targeted tolerance, or the iteration number reaches the 
maximum, the approximated solution is reached. Note that the iteration steps described above 
can be easily implemented to be embedded in any selected inverse solver. Last, a positive 
constraints was applied during the iterative process. 

3. Evaluation metrics for an objective assessment of the proposed methods 

3.1 The effect of the condition number on the precision of the solution 

The condition number of the sensitivity matrix determines how much a small disturbance in 
the measurement b could affect the solution of the inverse problem x in Eq. (3): 

 ( )Acond
δ δ

≤
x b

x b
 (15) 

where cond(A) = ||A−1|| ||A|| is the condition number. A smaller condition number could lead 
to results that are accurate and stable against noise, because the error magnification during 
iterations is minimized. Therefore, it’s beneficial to apply preconditioning methods to reduce 
the large condition number of the MFMT sensitivity matrix. 

                                                                           Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2771 



3.2 Coherence of the sensitivity matrix 

One of the most commonly used metric in the compressed sensing literature to assess the 
incoherence of a matrix A  is the mutual coherence [16], defined as the largest normalized 
inner product of two different columns ap and aq: 

 , ,

2 2

,
M(A)

p q
p q p q

p q

a a

a a

max
≠=  (16) 

M(A) will be small only if all the columns of A are almost orthogonal to each other, so it 
reports on the worst orthogonality of the whole matrix. Thus, to provide a more robust 
assessment of the incoherence of the sensitivity matrix, the cumulative coherence or the Babel 
function can be applied to report on the “average” coherence instead [31]. 

 Q = , 1

2 2

,
M ( ,A)

p q
p k p Q

p Q
p q

a a
k

a a

max max
∉

∈
=   (17) 

Where |Q| is the cardinality, i.e. the number of columns, of the selected subset of the 
sensitivity matrix Q, and M1(k, A) is monotonically non-decreasing [31]. 

3.3 Signal to Noise ratio 

Noise is an important factor impacting the accuracy of the MFMT inverse problem. To 
describe the noise level of the MFMT system more faithfully, we define the Signal-to-Noise 
Ratio (SNR) in our experiment as follows: 

 
( )
( )SNR

f b

b r

S S

S S

μ

σ

−
=

−
 (18) 

where Sf is the fluorescence signal from all source positions, and Sb is the average of Sf with 
the ROI. Sr is also the fluorescence signal but with the sample replaced by a beam dump. So 

( )f bS Sμ −  indicate the mean of the true signal intensity, and ( )b rS Sσ − indicate the 

standard deviation of the noise due to sample readout. 
For in silico experiments, a Gaussian noise with mean of zero and standard deviation of 

SNR is added to the simulated data set to mimic experimental measurements. We use SNR 
values ranging from 2 to 6 to explore the robustness of the proposed computational 
approaches on different noise levels. 

3.4 Quantitative metrics to assess 3D reconstructions 

For consistency, the same normalized figures of merit as [19] are used to quantify the 
difference between reconstruction results and the ground truth. Four normalized similarity 
metrics, normalized sum squared difference (nSSD), normalized sum absolute difference 
(nSAD), normalized disparity (nD), and normalized correlation (nR), are defined as follows. 
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where A(i, j, k), B(i, j, k) are the value of the normalized numerical model and reconstructed 
result at coordinates (i, j, k), N = R × C × Z is the total voxels in a cubic phantom and R, C, Z 
are the number of voxels three axes, respectively. ,′ ′A B  are binaries (0 or 1) of A, B through 
thresholding, and ⊕  represents the exclusive or (XOR) operation. The values of these four 
metrics are between 0 (for two absolute different models) and 1(for two coincident models). 
In other words, a larger value of the metrics indicates higher similarity between the 
reconstruction result and the ground truth. 

4. In silico and experimental validation 

4.1 Simulation settings 

 

Fig. 2. The numerical phantom designed to mimic a bio-printed vascular channel and sprouting 
capillaries. (a), (b) and (c) are the full view, xy view, and xz view of the phantom, respectively. 

A numerical phantom was designed to evaluate the performance of the proposed 
postprocessing methods, as shown in Fig. 2. The imaging domain had a surface area of 3.1 × 
3.1 mm2 with a depth of 3 mm and was uniformly discretized into 31 × 31 × 30 voxels with 
100 μm resolution. A vascular tree with a main trunk and three groups of offshoots was 
placed within the phantom at z = 1 mm. The diameter of the trunk and offshoots were 400 μm 
and 200 μm separately, and the separation distance between two adjacent off shoots was 100 
μm. The fluorophore concentration was assumed to be uniform in the vessel with effective 
quantum yield equal to 1. The optical properties of domain were assumed to be homogeneous 
at the excitation wavelength, with absorption coefficient μa = 0.02 mm−1, scattering 
coefficient μs' = 1 mm−1, index of refraction n = 1.34, and anisotropy factor g = 0.81. These 
values are derived from the collagen scaffold typically employed in our bio-printing 
application at 6-9 mg/ml density [32] and μs' is also on the same level with many biological 
tissues [33]. 

We replicated the imaging system configuration as used in a real experiment: 961 
scanning positions and 48 detectors at each source location. The in silico measurements are 
generated by multiplying the sensitivity matrix with the bio-printed vasculature model. We 
added Gaussian noise with SNR as low as 2. Then reconstructions are performed as described 
in Section 2. For each of the following simulations and experiment cases, the optimal 
regularization parameter is chosen through L-curve analysis [34]. 

                                                                           Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2773 



4.2 Coherence reduction via preconditioning 

We first evaluated the performance of the preconditioning method on improving the 
incoherence of the sensitivity matrix and reconstruction results with the numerical phantom. 
As we mentioned in Section 2.3, it could be directly applied on the whole sensitivity matrix 
(whole-pre) or block by block (sub-pre). We compared the distribution of largest 30% of 
normalized inner products between two columns of the sensitivity matrix in Fig. 3(a), and the 
cumulative coherence of the sensitivity matrix as a function of column number k in Fig. 3(b). 
As shown in the insert in Fig. 3(a), the sub-pre reduces the relative Area Under the Curve 
(AUC) to 45.27% while whole-pre reduces the AUC to 34.79%. The average slope listed in 
the insert in Fig. 3(b), a quantitative index of cumulative coherence, also shows a slower 
increment after applying the preconditioner on whole sensitivity matrix and sub sensitivity 
matrix, which demonstrates both preconditioning could effectively improve the orthogonality 
of the matrix. 

 

Fig. 3. Curves of the normalized products (a) and cumulative coherence (b) before and after 
applying the preconditioner on whole sensitivity matrix and block by block sensitivity matrix. 

We then compared the reconstruction results between non-pre, whole-pre and sub-pre, at 
different measurement noise levels (from 2 to 6). The comparison of four reconstruction 
metrics between non-pre and whole-pre is shown in Fig. 4(a), and those between whole-pre 
and sub-pre is shown in Fig. 4(b). At all noise levels, the reconstruction quality with the 
proposed preconditioning methods outperforms that without preconditioning. Moreover, 
though less effective in reducing the coherence of sensitivity matrix, sub-pre can retrieve the 
in silico model with greater similarity and smaller disparity compared to whole-pre. The 3D 
reconstruction images of three cases are shown in Fig. 4(c)–4(e). In accordance with the 
evaluation metrics, sub-preconditioning provides visually the best result. Although whole 
preconditioning is better at reducing matrix coherence, the reconstruction results are less ideal 
than sub preconditioning. This observation is in agreement with the results in [18] and [16], 
which can be explained by the higher condition number and thus more severe noise 
amplification when applying whole-preconditioning. 
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Fig. 4. Reconstruction results and evaluation metrics before and after applying 
preconditioning. (a) shows the metrics of reconstructions of non-pre and whole-pre at different 
SNR levels. (b) shows the metrics of reconstructions of whole-pre and sub-pre at different 
SNR levels. (c-e) display the 3-D reconstruction of non-pre, whole-pre and sub-pre, 
respectively. 

4.3 Faster convergence via the weighted iteration improvement method 

We further evaluated the performance of the proposed Weighted Iteration Improvement 
Method (WIIM) on accelerating the convergence rate of the inverse problem in four 
scenarios, named whole-pre without WIIM (M1), sub-pre without WIIM (M2), whole-pre 
with WIIM (M3) and sub-pre with WIIM (M4). It can be seen from Figs. 5(a)–5(c) that the 
convergence rates without WIIM always stagnate before the desired tolerance, especially for 
the cases with low SNR level. However, after our l1-norm regularization based iterative 
algorithm is embedded with WIIM, an effective improvement on the convergence rate can be 
seen. The last residual norm ||rk|| always becomes much smaller, as reported in Table 1. By 
comparing M1 with M3 (both whole-preconditioning) and M2 with M4 (both sub-
preconditioning), we can see from Table 1 that WIIM could help improve reconstruction 
results for both Jacobians. On the other hand, the evaluation metrics of M3 worse than M2 
shows that preconditioning has greater impact on the results than WIIM because the latter one 
is just a minor improvement for the iterative optimization algorithm. In addition, sub-pre 
converges faster than whole-pre when WIIM is applied, as illustrated by the green and blue 
curves in Fig. 5(a)–(c). Overall, the proposed WIIM works well for both whole sensitivity 
matrix and sub sensitivity matrix to fasten convergence rate. 

The visual reconstruction results in Fig. 5(d)–(f) further demonstrate the improvement of 
reconstruction quality with WIIM. The obvious improvement from Fig. 5(d)–5(f) indicates 
that the deterioration of reconstruction could likely results from the stagnation before the 
iterative algorithm converges to the desired tolerance. 
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Fig. 5. Comparison of convergence rate and visual reconstruction results among four scenarios 
without and with WIIM embedded in them. (a-c) plots the convergence rate and iteration 
number of the scenarios at three noise levels, respectively. (d-f) visualize the reconstruction of 
three scenarios at SNR of 4, respectively. 

Table 1. Quantification results of the preconditioning for numerical data (Targeted 
tolerance = 10−3, Preset max Iteration = 9,000) 

SNR Method Condition number
Residual 

norm 
Number of Iteration nR nD nSAD nSSD

2 

whole-pre without WIIM (M1) 256.42 1.2207 4,123 0.8654 0.6798 0.5245 0.4880

sub-pre without WIIM (M2) 178.29 0.9656 4,672 0.9027 0.8091 0.5488 0.8223

whole-pre with WIIM (M3) 42.76 0.1017 8,979 0.8727 0.6910 0.5476 0.4920

sub-pre with WIIM (M4) 25.19 0.1017 7,226 0.9129 0.8221 0.5686 0.8316

4 

whole-pre without WIIM (M1) 256.42 1.1479 3,963 0.9143 0.7822 0.6134 0.7908

sub-pre without WIIM (M2) 178.29 0.8654 4,419 0.9327 0.8398 0.6577 0.8674

whole-pre with WIIM (M3) 42.76 0.0081 8,085 0.9278 0.8091 0.6930 0.8242

sub-pre with WIIM (M4) 25.19 0.0081 5,853 0.9429 0.8510 0.7123 0.8821

6 

whole-pre without WIIM (M1) 256.42 0.0028 4,267 0.9443 0.8901 0.6576 0.8951

sub-pre without WIIM (M2) 178.29 0.0026 4,978 0.9443 0.9218 0.7005 0.9241

whole-pre with WIIM (M3) 42.76 0.00089 7,774 0.9528 0.9091 0.7212 0.9258

sub-pre with WIIM (M4) 25.19 0.00089 4,923 0.9619 0.9315 0.7406 0.9367

4.4 Performance of preconditioning methods on experimental data 

Next we evaluated the performance of the proposed preconditioning and regularization 
methods on an experimental data set. The collagen phantom to be explored is homogeneous 
with optical properties μa = 0.02 mm−1, μs' = 1 mm−1, n = 1.34, and g = 0.81. It has a size of 
3.1 × 3.1 × 3.0 mm3, and voxels of 100 × 100 × 100 μm3, same as the simulated case. Four 
polystyrene fluorophore beads (GFP 488/509, Cospheric) were placed 1.7~1.8 mm beneath 
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the sample surface under standard protocols. The transversal slices across the x-y and y-z 
planes taken from a micro-MRI are shown in Figs. 6(a)–(b) and the whole 3-D view of the 
phantom, overlaid with the best reconstruction result, is shown in Fig. 6(c). 

 

Fig. 6. Experimental phantom (a-c) are the x-y, x-z cross-sectional, and 3D view of phantom 
obtained from micro-MRI, overlaid with the best reconstruction result, respectively. 

The measurements were recorded as described in Section 2.1 and the data acquisition time 
at each scanning position was less than 20 ms. Similar to the in silico cases, we compared the 
condition number, convergence rate, and reconstruction metrics, when no / whole / sub-
preconditioning is preformed, with and without WIIM. All the inverse problems were solved 
with our l1-norm reconstruction algorithm as described in Section 2.2 and the optimal 
regularization parameters were determined through L-curves. As an example, Fig. 7(a) shows 
the L-curve for experimental data to determine the optimal regularization parameter when 
applying sub-preconditioning. 

Table 2. Quantification results of the preconditioning for experimental data (Targeted 
tolerance = 10−3, Preset max Iteration = 9,000, SNR = 4) 

Method Condition number Relative 
AUC

Residual 
norm

Number of Iteration nR nD nSAD nSSD

non-preconditioning 648,496 100% 1.1479 3,963 0.5440 0.6517 0.4562 0.4809

whole-pre without WIIM 268.91 34.79% 1.1426 7,910 0.9079 0.7762 0.6106 0.7902

sub-pre without WIIM 189.75 45.27% 1.1437 5,792 0.9270 0.8280 0.6513 0.8593

whole-pre with WIIM 49.08 34.79% 0.0081 8,085 0.9173 0.8075 0.6898 0.8217

sub-pre with WIIM 26.85 45.27% 0.0081 5,853 0.9379 0.8478 0.7065 0.8712

 

As shown in Table 2, the proposed preconditioner can effectively reduce the condition 
number as well as the coherence between columns of the sensitivity matrix in both formations 
of. It leads to a reduction of 2,524 and 3,628 times of condition number in the two sensitivity 
matrix formations, respectively. Meanwhile, the last residual norm also drops from 1.1479 to 
0.0081with the help of WIIM, which is very close to the targeted tolerance. The four 
evaluation metrics of reconstruction results in Table 2 further indicate the proposed 
computational methods greatly improve the reconstruction fidelity. Although whole-pre and 
sub-pre strategies have the same last residual norm, sub-pre achieves lower condition number 
as well as faster convergence rate. Visual results in Fig. 7(b)–7(e) and evaluation metrics in 
Table 2 also validate the superiority of reconstruction quality from sub-pre. However, as 
shown in Figs. 7(d), even the best results still suffer from some artifact, which illustrates that 
the proposed methods may still be sensitive to noise. Figure 7(e) shows the reconstruction 
result when applying both methods on the sub sensitivity matrices and noise suppression 
strategy as described in [19], which is very close to the ground truth obtained from micro-
MRI. 
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Fig. 7. Reconstruction results of experimental phantom. (a) L-curve for experimental data to 
determine the optimal regularization parameter when applying sub-preconditioning. (b-d) are 
results without preconditioning, with whole-pre and WIIM, and with sub-pre and WIIM, 
respectively. (e) is the result when applying sub-pre, WIIM and noise suppression on the 
experimental phantom . 

5. Conclusion 

We have proposed two computational methods to reduce the coherence and condition number 
of the sensitivity matrix of MFMT, and to accelerate convergence rate of the adopted iterative 
algorithm when solving the inverse problem. The preconditioning method can be directly 
applied on the whole sensitivity matrix or on sub-matrices of each detector, while the sub- 
preconditioning strategy provides fast convergence rate and better reconstruction quality than 
whole-preconditioning despite larger coherence between columns of the sensitivity matrix. 
This is in agreement with the observations in [16–18], because direct preconditioning usually 
lead to a large condition number and amplification of noise in the measurement vector. The 
regularization method based on WIIM proves to be effective to avoid stagnation before the 
iterative algorithm reaches the target tolerance. We have tested the performance of these two 
methods on in silico as well as in vitro data sets. In both cases, the reconstruction fidelity is 
significantly improved compared to previous results. We plan to further investigate the 
potential of the proposed methods for augmented data sets, such as in time-resolved cases 
[26] when applied to FRET tomography [35] to enable to monitor cellular processes [36,37] 
and in the case of phased array systems [38–41]. 

Funding 

National Institutes of Health (NIH) (R01-EB019443 and R01 BRG-CA20772); Natural 
Science Foundation of Shandong Province (ZR2018MF034); National Natural Science 
Foundation of China (61472227 and 81771532). 

Disclosures 

The authors declare that there are no conflicts of interest related to this article. 

 

                                                                           Vol. 9, No. 6 | 1 Jun 2018 | BIOMEDICAL OPTICS EXPRESS 2778 




